Booklet A		KIM 101E				Final					Jan	January 11, 2023					
Group Number		:					Surnar	ne :							Sign	ature	
List Numb		:					Name	:									
Student Nu	umber	:					e-mail	:									
1							-							-			18
1 H 1,00	8 2											13	14	15	16	17	2 He 4,003
2 Li 6,94	4 Be 9,012											5 B 10,81	6 C 12,01	7 N 14,01	8 0 16,00	9 F 19,00	10 Ne 20,18
3 Na 22,9	12 Mg 9 24,31	3	4	5	6	7	8	9	10	11	12	13 Al 26,98		15 P 30,97	16 S 32,06	17 Cl 35,45	
4 19 ⊀ 39,1	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,97	35 Br 79,90	36 Kr 83,80
5 Rb 85,4	38 Sr 7 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,95	43 Tc	44 Ru 101,1	45 Rh 102,9	46 Pd 106,4	47 Ag 107,9	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,8	52 Te 127,6	53 I 126,9	54 Xe 131,3
6 Cs 132,		57-71		73 Ta 180,9	74 W 183,8	75 Re 186,2	76 Os 190,2	77]r 192,2	78 Pt 195,1	79 Au 197,0	80 Hg 200,6	81 Tl 204,4	82 Pb 207,2	83 Bi 209,0	84 Po	85 At	86 Rn
7 87 7 Fr	88 Ra	\$9-10	8 104 Rf	105 Db	106 Sg	107 Bh	108 Hs	1D9 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
			57 La 138,9 89 Ac	90 Th	59 Pr 140,9 91 Pa 231,0	60 Nd 144,2 92 U 238,0	93 Np	62 Sm 150,4 94 Pu	63 Eu 152,0 95 Am	64 Gd 157,3 96 Cm	65 Тb 158,9 97 Вk	66 Dy 162,5 98 Cf	67 Ho 164,9 99 Es	68 Er 167,3 100 Fm	69 Tm 168,9 101 Md	70 Yb 173,0 102 No	71 Lu 175,0 103 Lr
	c = 2.	998 ×1	10 ⁸ m.	s ⁻¹ g	= 9.8	m.s ⁻²	² h =	6.626	×10 ⁻³	⁴ J.s	R _H =	2.179	×10 ⁻¹	⁸ J () °C =	273.1	5 K
	N _A =	6.02>	<10 ²³	1 ca	1 = 4.1	184 J	1 m	$1 = 10^{9}$	nm =	= 1010	Å = 1	0 ¹² pi	n 1g	g = 10	³ mg =	= 10 ⁶	μg
	1 atm	= '	760 m	nHg	= 76	50 torr	- =	101	325 P	a =	101.32	25 kPa	= 1	.0132	5 bar		
	$\mathbf{R} = 0$.0820	6 L atı	n mol [.]	⁻¹ K ⁻¹	= 0.08	3314 L	bar m	ol ⁻¹ K	$x^{-1} = 8$	3.314 .	mol ⁻	^l K ⁻¹ =	= 8.314	4 L kP	'a mol	⁻¹ K ⁻¹
	For w	ater:	c = 4.	184 J g	g ⁻¹ К ⁻	1	$K_{f} =$	1.86 K	kg m	ol ⁻¹	K	5 = 0.5	512 K	kg mo	l-1		
	1 Nev	vton (N) = 1	kg m	s-2	1 Jo	oule (J) = 1 I	N m =	1 kg n	n ² s ⁻²	-	l Wat	t (W)	= 1 J :	s-1	

- 1) When 275 mL of 0.105 M NaCl is left in an open beaker for a period of time, the volume is found to decrease to 237 mL due to the evaporation of water. What is the molarity of the final solution?
 A) 0.122 M
 B) 0.154 M
 C) 0.139 M
 D) 0.167 M
 E) 0.143 M
- 2) What mass of K₂Cr₂O₇ is required to produce 5.00 L CO₂ at 75 °C and 1.07 atm pressure from excess oxalic acid, H₂C₂O₄?

$$\begin{array}{ccc} Cr_2O7^{2-}(aq) + C_2O4^{2-}(aq) \rightarrow CO_2(g) + Cr^{3+}(aq) & (unbalanced) \\ A) \ 9.18 \ g & B) \ 11.45 \ g & C) \ 10.33 \ g & D) \ 8.20 \ g & E) \ 9.43 \ g \end{array}$$

- 3) A soft drink contains a certain amount of citric acid (C₆H₈O₇, 192.13 g mol⁻¹). If 100 mL of the soft drink require 33.58 mL of 0.010 M NaOH to neutralize completely the citric acid, how many ppm of citric acid does the soft drink contain? Assume the density of the drink is 1.00 g mL⁻¹. C₆H₈O₇(aq) + NaOH(aq) \rightarrow Na₃C₆H₅O₇(aq) + H₂O(1) (unbalanced)
 - A) 430 ppm B) 860 ppm C) 645 ppm D) 215 ppm E) 108 ppm

Booklet A

4) A mixture only contains sucrose (C₁₂H₂₂O₁₁, 342.30 g mol⁻¹) and ethyl alcohol (C₂H₆O, 46.07 g mol⁻¹). A 1.52 g sample of this mixture is reacted with acidic aqueous potassium dichromate (K₂Cr₂O₇) solution. Produced 3.09 L CO2(g) is collected over water in a container at 35 °C and the container has a barometric pressure of 0.53 atm. Water has a vapor pressure of 42.20 mmHg. Calculate the mass percent of C₁₂H₂₂O₁₁ in the mixture.

$$\begin{array}{ccc} C_{12}H_{22}O_{11}(aq) + Cr_2O_7^{2-}(aq) \rightarrow CO_2(g) + Cr^{3+}(aq) & (not \ balanced) \\ C_2H_6O(aq) + Cr_2O_7^{2-}(aq) \rightarrow CO_2(g) + Cr^{3+}(aq) & (not \ balanced) \\ A) \ 37\% & B) \ 25\% & C) \ 63\% & D) \ 84\% & E) \ 12\% \end{array}$$

5) If 8.35 g solid carbon dioxide (CO₂, 44.01 g mol⁻¹) was placed in a container of 4 L at 27 °C containing air under 740 mmHg pressure. What would be the total pressure (in atm) in the container after the carbon dioxide vaporizes? (Assume that the temperature is constant)
A) 1.06 etm = P) 2.41 etm = C) 2.14 etm = D) 2.14 etm = D) 1.63 etm

6) A 35 g gas mixture is composed of 0.45 moles of $N_2(g)$, 35% $O_2(g)$ by mass, and some amount of $CO_2(g)$. The mixture was in a 4.8 L container under 6 atm pressure. Then 0.45 moles of He(g) was added to the container and the temperature was raised by 20 °C. Calculate total pressure (as atm) of the final gas mixture.

7) When steam condenses to liquid water, 2.26 kJ of heat is released per gram. The heat from 168 g of steam is used to heat a room whose dimensions are 607 cm × 366 cm × 244 cm and filled with air. The specific heat of air at normal pressure is 1.015 J g⁻¹ K⁻¹ and density is 1.188 kg m⁻³. What is the change in air temperature in the room, assuming the all the heat from the steam is absorbed by the air?
A) 17.43 °C
B) 8.71 °C
C) 5.81 °C
D) 11.62 °C
E) 7.61 °C

8) Specific heat of fusion for water is -0.334 kJ g⁻¹ at 0 °C. When 31.5 g of ice completely melts in a coffee-cup calorimeter containing 0.210 kg water at 21.0 °C, what is the final temperature of the sytem at equilibrium? Assume no heat lost to the surroundings.
A) 3.92 °C
B) 2.1 °C
C) 14.5 °C
D) 7.84 °C
E) 23.5 °C

- 9) Determine the most stable molecular geometry and calculate the formal charge of central atom for ClO₃⁻ ion.
 - A) Trigonal Pyramidal; +2
 - B) Tetrahedral; -1
 - C) Trigonal planar; +1
 - D) Tetrahedral; +2
 - E) T-shaped; -1

10) Which of the follo	owing species has sp ²	hybridization type?		
A) PF ₆ -	B) COS	C) SiCl ₄	D) NO3 -	E) AsF5

- 11) An unknown metal crystallizes in a face-centered cubic structure, and its density is 21.5 g cm⁻³. The edge of the unit cell is 3.92 Å. Calculate the atomic mass of the unknown metal.
 A) 63.55 g/mol
 B) 83.80 g/mol
 C) 26.98 g/mol
 D) 194.86 g/mol
 E) 106.42 g/mol
- 12) In which of the following compounds, hydrogen bonding **is not** an important intermolecular force? A) HF B) CH₃OH C) CH₃NH₂ D) NH₃ E) H₂S

Booklet A

13) Lemon juice co	ntain 7% citric acid, C	6H8O7, by mass. A	solution of 500 mL is	prepared by using				
enough water a	nd lemons, which prod	uces 90 g of juice w	hen squezed. How man	ny lemons should be				
used in order to prepare a solution contains 0.13 M citric acid?								
A) 1	B) 2	C) 3	D) 4	E) 5				

14) Calculate the vapor pressure depression of a solution at 35 °C made by dissolving 20.2 g of sucrose, C12H22O11, in 70.1 g of water. The vapor pressure of pure water at 35 °C is 42.2 mmHg. Sucrose is non-volatile.

A) 0.30 mmHg B) 41.6 mmHg C) 1.9 mmHg D) 20.8 mmHg E) 0.63 mmHg

15) Enough amount of urea, (NH₂)₂CO, is dissolved in 100 g of water. The solution freezes at -0.085 °C. How many grams of urea were dissolved to make this solution?
A) 1.08 g
B) 0.27 g
C) 1.01 g
D) 0.48 g
E) 0.12 g

16) According to the following equilibrium reaction, 0.2 mol CH₄, 0.3 mol C₂H₂ and 0.4 mol H₂ are in equilibrium at 1500°C in a 4.0 L sealed flask. What is the value of K_p for this reaction at 1500°C?

	$CH_4(g) \rightleftharpoons C_2$	$\mathrm{H}_{2}(\mathrm{g}) + \mathrm{H}_{2}(\mathrm{g})$	(unbalanced reaction)	
A) 436	B) 949	C) 145	D) 635	E) 190

17) 2 SO₂(g) + O₂(g) \rightleftharpoons 2 SO₃(g) ΔH= -197.8 kJ K_c= 35.5

When 0.2 mol of $SO_2(g)$, 0.4 mol of $O_2(g)$ and 0.1 mol of $SO_3(g)$ are placed in a 1 L vessel, which of the following statement(s) is/are true?

- I. Reaction is at the equilibrium
- II. Reaction is in the forward direction
- III. Concentration of O₂(g) increases
- IV. Decreasing the temperature increases the equilibrium constantA) I, IVB) II, IVC) III, IVD) IIE) III
- 18) What is the pH of 0.1 M aqueous NaF solution? $K_a = 6.6 \times 10^{-4}$ for HFA) 8.09B) 11.81C) 3.18D) 12.21E) 9.82

19) HA is a weak monoprotic acid. If the pH is 5.5 for a solution of 0.1 M HA what is the pK_a value? A) 2.1×10^{-8} B) 5.2×10^{-6} C) 1.0×10^{-10} D) 3.2×10^{-5} E) 3.7×10^{-10}

20) What is the concentration of S²-(aq) in a 0.5 M solution of H₂S?

H₂S(aq) + H₂O (l) ⇒ H₃O⁺ (aq) + HS⁻ (aq)
$$K_{a,1} = 1.0 \times 10^{-7}$$

HS⁻ (aq) + H₂O (l) ⇒ H₃O⁺ (aq) + S²⁻ (aq) $K_{a,2} = 1.0 \times 10^{-19}$

A) 1.5×10^{-5} M B) 2.2×10^{-4} M C) 1.0×10^{-19} M D) 2.3×10^{-10} M E) 1.7×10^{-7} M

Answer Key Testname: 11.01.2023_EN_A_CU

1) A 2) A 3) D 4) C 5) D 6) A 7) C 8) D 9) A 10) D 11) D 12) E 13) B 14) E 15) B 16) D 17) B 18) A 19) C 20) C