	Booklet A	be filled by the studen	<u>udent</u> .			
	Group Number		Surname			Signature
	List Number		Name			
	Student Number		e-mail			
KIM	101E		Final			August 16,2016
1atm	=101325Pa R=8.314 J/	mol K R= 0.082 L	atm/mol K			
1) W ¹² C	Thich of the following subst ¹⁶ O ¹⁴ N ³² S ^{35.5} Cl)	ances has only the Lo	ndon dispersion	forces as the t	type of intermolecular for	prces of attraction? (1
A) C	H ₃ OH	B) NH ₃	C) H ₂ S		D) CH ₄	E) HCl
2) W A) L	Thich of the following speci i_2^+	es is unstable ? ($_3Li$ B) Be $_2^{2+}$	${}_{4}Be {}_{7}N {}_{1}$ C) $N_{2}{}^{2}$	₀ Ne ₁₁ Na)	D) Na_2^{2+}	E) Ne_2^{2+}
3) Fo and (or the reaction of $2 \text{ SO}_{2(g)}$ + 0.052 mol of $\text{SO}_{3(g)}$ are added I. Reaction is at the equil II. Forward reaction occur	$O_{2(g)} \leftrightarrow 2 \text{ SO}_{3(g)}$ the ed in a 2.0 Liter vesse ibrium. III. Con s. IV. Con	equilibrium con l, which of the f centration of SO centration of O	stant is $K=35$ following states $D_3(g)$ will increase $D_2(g)$ will decrease	5.5. When 0.10 mol of s ments is true? ease. ase.	$SO_{2(g)}$, 0.20 mol of O
A) II	, III, IV B) I,	IV	C) I		D) II, III	E) I, II, III, IV
have A) I(B) I(C) I(D) I(E) I(5) Ca	the same number of electro Cl molecules have a lower r Cl molecules have London o Cl molecules form hydroger odine in ICl is more electron Cl molecules are polar.	ons.) nolecular weight. lispersion forces. 1 bonding. negative than bromine M Ba(OH) ₂ solution.	in Br _{2.}			
A) 2	2.0	B) 1.7	C) 1	2.0	D) 12.3	E) 7.0
6) T kJ/m	he normal boiling point of ol. What is the vapor press	isooctane (C_8H_{18}), a ure of isooctane at 25	gasoline comp °C?	oonent, is 99.2	^e °C and its enthalpy o	f vaporization is 35.7
A) 9	0.2 mmHg	B) 65.6 mm Hg	C) 42	2.9 mmHg	D) 130.2 mmHg	E) 30.1 mmH
7) Li edge	i metal has a body centered length of the unit cell of Li	l cubic (bcc) structure metal.	e. Its density is	0.53 g/cm ³ an	d its atomic mass is 6.9	94 g/mol. Calculate th
A) 1	53.6 pm	<mark>B) 351.6 pm</mark>	C) 5	27.4 pm	D) 263.7 pm	E) 410.3 pm
8) W	That is the molarity of sode α/mL^2 (²³ Na ^{35.5} Cl ¹⁶ O	ium chloride in 1.0 L	solution that i	s 13.0% sodiu	m chloride by mass an	d that has a density
A) 1	$.43 \times 10^{-2}$	B) 1.43	C) 2		D) 2.45	E) 2.56
9) O nitro A) 1	n a clear day at sea level, gen in water is 5.3×10 ⁻⁴ M. .0 atm	with a temperature of At what partial press B) 0.63 atm	² 25°C, the partiture of N_2 in atm C) 0	al pressure of , the concentra .78 atm	N_2 in air is 0.78 atm a ation in water is 1.1×10^{-10} D) 2.1 atm	nd the concentration ⁻³ M? <mark>E)1.6 atm</mark>
10) A is the	A solution made by dissolvi e approximate molecular we	ng 9.81 g of a nonvol eight of the substance	atile nonelectro? ? (For water, K _t	lyte in 90.0g of $= 0.51 \text{ °C/m}$	f water boiled at 100.37	°C at 760 mmHg. Wh
A) 2-	40 g/mol	B) 150 g/mol	C) 79	∂ g/mol	D) 61 g/mol	E) 34 g/mol
11) 7 U ⁴⁺ (a How M _w =	The following oxidation-red $_{q_{1}}$ + MnO ₄ - $_{(aq)}$ \rightarrow many milliliters of 0.216 M = 314.0 g/mol)?	luction (redox) reaction $UO_2^+(aq) + Mn$ $M KMnO_4$ solution are	on occurs in acic $^{2+}_{(aq)}$ (not bal e required to rea	l solution. anced) ct with 11.6 g	of UF_4 (the source of th	e U ⁴⁺ ion) (For UF ₄ ,
A) 34	4.2 mL	B) 3.42 mL	C) 1.71	mL	D) 6.84 mL	E) 17.1 mL
12)	Which of the following state	ements is false?				

A) Water and salt are formed in a neutralization reaction

B) Strong acids are completely ionized in waterC) Lewis base is any species that donates an electron pair

D) Organic acids that shown by the general formula of RCOOH are strong acids

E) NH_3 is formed by the hydrolysis of NH_4Cl with water.

	Booklet A	In each question sheet, this must be filled by the student.						
	Group Number		Surna	me		Signature		
	List Number		Na	me				
	Student Number		e-m	nail				
KIM	[101E Calculate the estimatic press	$r_{\rm M}$ of a 0.2 M KCl sol	F Jution at '	$\frac{500}{39}$ $\frac{35.5}{10}$		August 16,2016		
13) (<mark>A) 9</mark>	90 kPa	B) 495 kPa		C) 83 kPa	D) 42 kPa	E) 325 kPa		
14) ' solut	The vapor pressure of put tion prepared by dissolving $r^{(160)}$	re water at 25°C is 23 g 35g of urea (a nonvol	8.8 torr. (latile and	Calculate the vapor press non-electrolyte substanc	sure of water in torr to e, its molar weight is	unit at 25°C abov 60.0 g/mol) in 75g		
A) 3	.3	B) 27		C) 2.9	D) 0.88	<mark>E) 21</mark>		
15) devie dens	Under certain temperature ce. When the same device ity of this unknown gas (¹	and pressure density c is used under the sar ${}^{6}\Omega$	of oxyger ne condi	n is 1.30 g/L. A 21.0 mL tions, effusion rate of an	volume of O _{2 (g)} effusion unknown gas is 15.0	ses in 1.000 s from mL/s. Calculate		
A) 1	.51 g/L	B) 2.55 g/L		C) 0.66 g/L	D) 0.39 g/L	E) 0.21 g/L		
16) (2 CC	Calculate the change in inte $O_{(g)} + O_{2(g)} \rightarrow 2 CO_{2(g)} \Delta$	ernal energy (ΔU) whe H= – 566.0 kJ/mol	n 2 mole	s of CO are converted to	2 moles of CO_2 at 1 at	m and 25°C.		
A) –	568,5 kJ/mol	B) 563,5 kJ/mol		C) –1912,8 kJ/mol	D) –1915,7 kJ/mol	E) –566 kJ/n		
17) ' A)H	Which one of the following Cl	gs is a weak acid? B) HBr		C) HF	D) HI	E) None		
18) / <mark>A) H</mark>	According to VSEPR theor <mark>ICN</mark>	y, which of the following B) SF ₂	ing has tl	ne largest bond angle? (1) C) BF ₃	$H_{6}C_{7}N_{16}S$ D) $H_{2}S$	9F 5B 15 E) PF3		
19) (<mark>A) 1</mark>	Calculate the pH of the 0.1 <mark>.0</mark>	0 M CH ₃ COOH solution B) 2.9	on (for ac	cetic acid Ka= 1.8×10^{-5} C) 4.7) D) 5.7	E) None		
20) V	Which of the following state $\ddot{F}: H$ $-B + :N - H \longrightarrow :F$ $\dot{F}: H$	tements is wrong accor :F: H -B-N-H :F: H	rding to t	he reaction ?				
A) I B) B C) A D) E E) N	BF_3 is a Lewis acid BF_3 takes electron pair according to Arrhenius, this electron pair on the nitroges None	<mark>s is a neutralization rea</mark> n is used in the formati	<mark>ction</mark> on of che	emical bonding				
				-				
21) [gas t	The work done when a gas to the surroundings. Calcul	is compressed in a cyli ate the internal energy	inder is 4 change (62 J. During this process	, there is a heat transfe	er of 128 J from th		
21) 7 gas t A) 5	The work done when a gas to the surroundings. Calcul 90 J	is compressed in a cylate the internal energy B) -590 J	inder is 4 change (62 J. During this process ΔU) for this process. C) 0 J 	, there is a heat transfe D) –334 J	er of 128 J from th <mark>E) 334 J</mark>		
 21) 7 gas t A) 5 22) 1 What 	The work done when a gas to the surroundings. Calcul 90 J For the reaction of 2 $SO_{2(g)}$	is compressed in a cyl: ate the internal energy B) -590 J $_{1} + \text{O}_{2(g)} \leftrightarrow 2 \text{ SO}_{3(g)}$ th n constant in terms par	inder is 4 change (e equilib	462 J. During this process ΔU) for this process. C) 0 J rium constant in terms of sures (Kp) at 25°C?	, there is a heat transfe D) –334 J S molar concentration	er of 128 J from th <mark>E) 334 J</mark> is Kc= 35.5 at 25		
21) 7 gas t A) 5 22) 1 Wha A) 1	The work done when a gas to the surroundings. Calcul 90 J For the reaction of $2 \text{ SO}_{2(g)}$ at is the value of equilibrium .5 B) 0	is compressed in a cyl: ate the internal energy B) -590 J $+ O_{2(g)} \leftrightarrow 2 \text{ SO}_{3(g)}$ th n constant in terms par .06	inder is 4 change (e equilib rtial press	 62 J. During this process ΔU) for this process. C) 0 J rium constant in terms of sures (Kp) at 25°C? C) 21197.7 	, there is a heat transfe D) –334 J ² molar concentration D) 867.5	er of 128 J from th E) 334 J is Kc= 35.5 at 25 E) None		
21) 7 gas t A) 5 22) 1 Wha A) 1 23) 1 H ₂ S ₍ A) +	The work done when a gas to the surroundings. Calcul 90 J For the reaction of $2 \text{ SO}_{2(g)}$ at is the value of equilibrium 5 B) 0 Using bond energies, calcul $g_{g} + 2 \text{ F}_{2(g)} \rightarrow 2 \text{ HF}_{(g)} + S$ $\cdot 381 \text{ kJ/mol}$	is compressed in a cyl ate the internal energy B) -590 J $+ O_{2(g)} \leftrightarrow 2 \text{ SO}_{3(g)}$ th n constant in terms par .06 late the enthalpy chang $F_{2(g)}$ (Bond energies B) + 2758 kJ/mol	inder is 4 change (e equilib rtial press ge (ΔH) s; H–S: 3	 62 J. During this process ΔU) for this process. C) 0 J rium constant in terms of sures (Kp) at 25°C? C) 21197.7 for the following reaction 640 kJ/mol; F–F: 159 kJ/mol 	, there is a heat transfe D) –334 J F molar concentration D) 867.5 L mol; H–F: 570 kJ/mol D) – 762 kJ/mol	er of 128 J from th E) 334 J is Kc= 35.5 at 25 E) None l; S-F:310 kJ/mol E) – 381 kJ/m		
 21) 7 gas t A) 5 22) 1 What A) 1 23) 1 H₂S₍ A) + 24) 1 increase 	The work done when a gas to the surroundings. Calcul 90 J For the reaction of $2 \text{ SO}_{2(g)}$ at is the value of equilibrium 5 B) 0 Using bond energies, calcu $g_{g} + 2 \text{ F}_{2(g)} \rightarrow 2 \text{ HF}_{(g)} + S$ 381 kJ/mol For the reaction of $2 \text{ SO}_{2(g)}$ eases the equilibrium const	is compressed in a cyl ate the internal energy B) -590 J $) + O_{2(g)} \leftrightarrow 2 \text{ SO}_{3(g)}$ th n constant in terms par .06 late the enthalpy chang SF _{2 (g)} (Bond energies B) + 2758 kJ/mol $_{g)} + O_{2(g)} \leftrightarrow 2 \text{ SO}_{3(g)}$, ant?	inder is 4 change (e equilib rtial press ge (Δ H) s; H–S: 3 the enth	 462 J. During this process ΔU) for this process. C) 0 J rium constant in terms of sures (Kp) at 25°C? C) 21197.7 for the following reaction 440 kJ/mol; F–F: 159 kJ/mol C) +62 kJ/mol halpy change is ΔH= -19 	, there is a heat transfe D) –334 J ² molar concentration D) 867.5 mol; H–F: 570 kJ/mol D) – 762 kJ/mol	er of 128 J from th E) 334 J is Kc= 35.5 at 25 E) None l; S–F:310 kJ/mol E) – 381 kJ/m e following condit		
21) 1 gas t A) 5 22) 1 Wha A) 1 23) 1 H ₂ S ₍ A) + 24) 1 increa	The work done when a gas to the surroundings. Calcul 90 J For the reaction of 2 SO _{2(g} th is the value of equilibrium 5 B) 0 Using bond energies, calcu $g_{1} + 2 F_{2(g)} \rightarrow 2 HF_{(g)} + S$ - 381 kJ/mol For the reaction of 2 SO _{2(g} eases the equilibrium const I. Decreasing of the compared I. Increasing the temperation	is compressed in a cyl ate the internal energy B) -590 J $+ O_{2(g)} \leftrightarrow 2 \text{ SO}_{3(g)}$ th m constant in terms par .06 late the enthalpy chang SF _{2 (g)} (Bond energies B) + 2758 kJ/mol g) + O _{2(g)} $\leftrightarrow 2 \text{ SO}_{3(g)}$, ant? centration of O _{2(g)} iture	inder is 4 change (e equilib rtial press ge (ΔH) s; H–S: 3 the enth III. A IV. I	 62 J. During this process ΔU) for this process. C) 0 J rium constant in terms of sures (Kp) at 25°C? C) 21197.7 for the following reaction 640 kJ/mol; F–F: 159 kJ/mol 62 kJ/mol 64 alpy change is ΔH= -19 Adding SO_{3(g)} Decreasing Temperature 	, there is a heat transfe D) –334 J F molar concentration D) 867.5 mol; H–F: 570 kJ/mol D) – 762 kJ/mol 7.8 kJ. Which of the	er of 128 J from th E) 334 J is Kc= 35.5 at 25 E) None l; S–F:310 kJ/mol E) – 381 kJ/m e following condit		

25) Predict the molecular shape and hybridization type of SeCl_{4. 34}Se 17Cl
 A) seesaw, sp³d
 B) trigonal bipyramidal, sp³d
 C) T-Shaped, sp³d
 D) trigonal bipyramidal, sp³d²
 E) tetrahedral, sp³