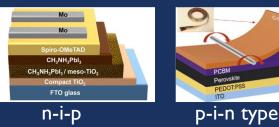
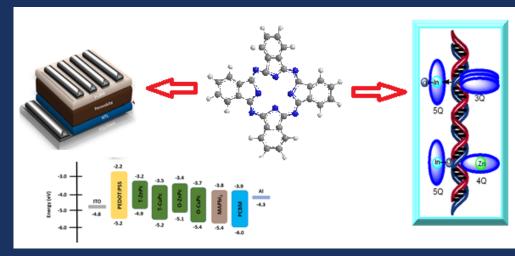


PROF. DR. AYFER KALKAN BURAT TETRAPYROLE-BASED TARGET MATERIALS

SYNTHESIS AND CHARACTERIZATION OF TETRAPYRROLE-BASED MACROCYCLIC COMPOUNDS FOR USE IN DIFFERENT TECHNOLOGICAL AREAS SUCH AS HOLE TRANSFER LAYER AND/OR BIOLOGICAL APPLICATIONS IN SOLAR CELLS.

PROJECTS

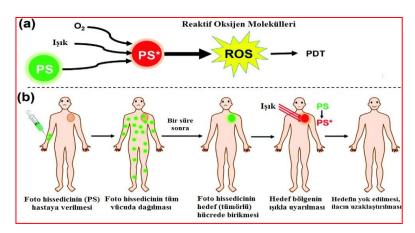

TUBITAK-1001 NOVEL FLUORENYL SUBSTITUTED PHTHALOCYANINES FOR PHOTODYNAMIC ANTIMICROBIAL ACTIVITY, BIOFILM INHIBITION, AND DNA INTERACTION


TOGETHER WITH THE ITU ENERGY INSTITUTE TEAM, WE APPLIED FOR A BILATERAL COOPERATION PROJECT WITH KOREA AND BULGARIA ON SOLAR CELLS.

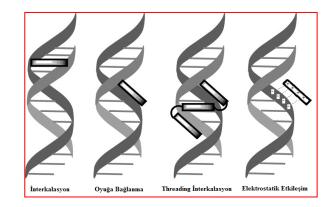
kalkanayf@itu.edu.tr

Designing Hole Tranfer Materials

 We are designing HTM for perovskite solar cells, one of the remarkable structures of photovoltaic solar cells.



Potential Drug Synthesis for Photodynamic Therapy


Synthesis of target phthalocyanine structures,
examination of photophysical and photochemical properties,
Investigation of interactions with DNA and antibacterial/antimicrobial properties.

Using commercially available cost-effective Zn(II) phthalocyanine as hole-transporting material for inverted type perovskite solar cells and investigation of dopant effect

Mechanism and application of photodynamic therapy

How phthalocyanine binds to DNA

