Group Number	$:$	Surname	$:$
List Number	$:$	Name	$:$
Student Number	$:$	e-mail	$:$

	1																	18
1	1 H 1,008	2											13	14	15	16	17	
2	$\begin{array}{\|c\|} \hline 3 \\ L i \\ 6,94 \end{array}$	4 $B e$ 9,012											5 B 10,81	6 C 12,01	7 N 14,01	$\begin{gathered} 8 \\ 0 \\ 16,00 \end{gathered}$	9 F 19,00	
3	11 Na 22,99		3	4	5	6	7	8	9	10	11	12	13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06 34	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35,45 \end{gathered}$	$\begin{array}{\|c\|} \hline 18 \\ \mathrm{Ar} \\ 39,95 \end{array}$
4	$\begin{gathered} 19 \\ K \\ 39,10 \end{gathered}$	\square	21 $S c$ 44,96		23 V 50,94	$\begin{gathered} 24 \\ \mathrm{Cr} \\ 52,00 \end{gathered}$	\square	26 Fe 55,85	27 CO 58,93		\square		31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,97	35 Br 79,90	$\begin{array}{\|c\|} 36 \\ \mathrm{Kr} \\ 83,80 \\ \hline \end{array}$
5	$\begin{gathered} 37 \\ R \mathrm{Rb} \\ 85,47 \end{gathered}$		39 Y 88,91		41 Nb 92,91	$\begin{array}{\|c\|} \hline 42 \\ \mathrm{Mo} \\ 95,95 \end{array}$	43 TC	44 Ru 101,1	45 Rh 102,9	$\begin{array}{\|c\|} \hline 46 \\ \mathrm{Pd} \\ 106,4 \end{array}$	47 Ag 107,9	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,8	\square	\square	54 Ke 131,3
6	55 C_{s} 132,9	56 Ba 137,3	57-71		73 Ta 180,9	74 W 183,8	75 $R e$ 186,2	76 Os 190,2	$\begin{gathered} 77 \\ 1 \mathrm{r} \\ 192,2 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 78 \\ \mathrm{Pt} \\ 195,1 \\ \hline \end{array}$	79 Au 197,0	80 Hg 200,6	81 Tl 204,4	82 Pb 207,2	83 Bi 209,0	84 Po	B5	$\begin{aligned} & 86 \\ & \mathrm{Rn} \end{aligned}$
7	87 Fr	88 Ra	89-108	104 Rf	$\begin{gathered} 105 \\ \mathrm{Db} \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \end{gathered}$	$\begin{gathered} 107 \\ \mathrm{Bh} \end{gathered}$	$\begin{gathered} 108 \\ \mathrm{Hs} \end{gathered}$	$\begin{gathered} 109 \\ \text { Mt } \end{gathered}$	110 Ds	111 Rg	$\begin{gathered} 112 \\ \mathrm{Cn} \end{gathered}$	$\begin{aligned} & 113 \\ & \mathrm{Nh} \end{aligned}$	$\begin{gathered} 114 \\ \mathrm{FI} \end{gathered}$	$\begin{aligned} & 115 \\ & \mathrm{Mc} \end{aligned}$	$\begin{gathered} 116 \\ \text { LV } \end{gathered}$	$\begin{aligned} & \hline 117 \\ & \text { Ts } \end{aligned}$	$\begin{gathered} 118 \\ \mathrm{Og} \end{gathered}$
					58 Ce 140,1	$\begin{array}{\|c\|} \hline 59 \\ \mathrm{Pr} \\ 140,9 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 60 \\ \mathrm{Nd} \\ 144,2 \\ \hline \end{array}$	61 Pm	62 $5 m$ 150,4	$\begin{array}{\|c\|} \hline 63 \\ \mathrm{Eu} \\ 152,0 \\ \hline \end{array}$	64 Gd 157,3	65 Tb 158,9	66 $D y$ 162,5	67 Ho 164,9	$\begin{array}{\|c\|} \hline 68 \\ \mathrm{Er} \\ 167,3 \\ \hline \end{array}$	69 Tm 168,9	$\begin{array}{\|c\|} \hline 70 \\ \text { Yb } \\ 173,0 \\ \hline \end{array}$	71 Lu 175,0
				89	90 Th 232,0	91 Pa 231,0	92 U 238,0	93 $N p$	94 Pu	$\begin{aligned} & 95 \\ & \text { Am } \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{~cm} \end{aligned}$	97 BK	Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

$\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \quad \mathrm{~g}=9.8 \mathrm{~m} \mathrm{~s}^{-2} \quad \mathrm{~h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \quad \mathrm{R}_{\mathrm{H}}=2.179 \times 10^{-18} \mathrm{~J} \quad 0^{\circ} \mathrm{C}=273 \mathrm{~K}$
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \quad 1 \mathrm{cal}=4.184 \mathrm{~J} \quad 1 \mathrm{~m}=10^{9} \mathrm{~nm}=10^{10} \AA=10^{12} \mathrm{pm} \quad 1 \mathrm{~g}=10^{3} \mathrm{mg}=10^{6} \mu \mathrm{~g}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}=760 \mathrm{torr}=101325 \mathrm{~Pa}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}$ $\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=0.08314 \mathrm{~L}^{\mathrm{bar} \mathrm{mol}}{ }^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~L} \mathrm{kPa} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
For water: $\quad \mathrm{c}=4.184 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1} \quad \mathrm{~K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \quad \mathrm{~K}_{\mathrm{b}}=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
1 Newton $(N)=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2} \quad 1$ Joule $(\mathrm{J})=1 \mathrm{Nm}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \quad 1$ Watt $(\mathrm{W})=1 \mathrm{~J} \mathrm{~s}^{-1}$

1) A gas, contained in a cylinder with a frictionless piston, expands from a volume of 4 L to a volume of 14 L under a constant pressure 1 atmosphere and absorbs 800 J of thermal energy from its surroundings. Determine the change in the internal energy of the gas. ($1 \mathrm{~L} . \mathrm{atm}=101.325 \mathrm{~J}$)
A) -213.25 J
B) 150.32 J
C) -417.30 J
D) 320.75 J
E) -320.75 J
2) A 1.072 g sample of helium gas is found to occupy a volume of 8.446 L when collected over hexane at $25^{\circ} \mathrm{C}$ and 738.6 mmHg barometric pressure. Use these data to determine the vapor pressure of hexane at $25^{\circ} \mathrm{C}$.
A) 149.0 mmHg
B) 254.2 mmHg
C) 76.4 mmHg
D) 737.8 mmHg
E) 590 mmHg
3) Which of the following molecules has the sp^{2} hybridization on its central atom?
I) CO_{2}
II) SO_{2}
III) NO_{2}
IV) $\left.\mathrm{SO}_{3} 2-\mathrm{V}\right) \mathrm{SO}_{3}$
A) III, V
B) II, IV, V
C) II, III
D) II, III, V
E) I, II, IV

Booklet A

4) Nitrous oxide is a gas used in anesthesia with the formula $\mathrm{N}_{2} \mathrm{O}$. It is also known as laughing gas. Which of the following is the most plausible Lewis structure of nitrous oxide?
A) $: N-N=O:$

C)

D)

E)

5) Which of the following molecule(s) has zero dipole moment?
I) BF_{3}
II) $\mathrm{H}_{2} \mathrm{O}$
III) $\mathrm{SO}_{4}{ }^{2-}$
IV) $\mathrm{ICl}_{2}{ }^{-} \quad$ V) SO_{2}
A) I, III, and IV
B) I, II, and V
C) I and III
D) Only I
E) II and IV
6) The unbalanced reaction between $\mathrm{Br}_{2}(\mathrm{aq})$ and $\mathrm{IO}_{3}-(\mathrm{aq})$ in an acidic solution is given below.
$\mathrm{Br}_{2}(\mathrm{aq})+\mathrm{IO}_{3}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{IO}_{4}{ }^{-}(\mathrm{aq})$ (unbalanced).
What volume of $0.788 \mathrm{M} \mathrm{KIO}_{3}$ will react with $4 \mathrm{~g} \mathrm{Br}_{2}$?
A) 31.76 mL
B) 26.01 mL
C) 34.90 mL
D) 0.02601 mL
E) 0.03176 mL
7) A tank contains 13.0 L of oxygen gas at $25^{\circ} \mathrm{C}$ and 35.0 atm . Helium gas is added into the tank until the mole fraction of oxygen becomes 0.210 . Calculate the density of the gas mixture in g / L.
A) $56.6 \mathrm{~g} / \mathrm{L}$
B) $76.2 \mathrm{~g} / \mathrm{L}$
C) $44.4 \mathrm{~g} / \mathrm{L}$
D) $33.7 \mathrm{~g} / \mathrm{L}$
E) $67.3 \mathrm{~g} / \mathrm{L}$
8) Which of the following is a characteristic of an ideal gas?
A) Collisions between gas particles are perfectly elastic.
B) Individual gas particles occupy fixed volume.
C) The gas cannot be compressed infinitely.
D) There exist attractive and repulsive inter-particle forces.
E) Collisions between gas particles and container walls are not elastic.
9) What is the coefficient of a hydrogen ion when the following redox reaction is balanced? $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mn} 2+(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$ (1) (unbalanced)
A) 10
B) 8
C) 16
D) 2
E) 5
10) $\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow 10 \mathrm{POCl}_{3}(\mathrm{~g})$

Calculate the enthalpy of the reaction above by using the information given below.
(i) P_{4} (s) $+6 \mathrm{Cl}_{2}$ (g) $\rightarrow 4 \mathrm{PCl}_{3}$ (g)
$\Delta \mathrm{H}=-1225.6 \mathrm{~kJ} / \mathrm{mol}$
(ii) P_{4} (s) $+5 \mathrm{O}_{2}$ (g) $\rightarrow \mathrm{P}_{4} \mathrm{O}_{10}$ (s)
$\Delta \mathrm{H}=-2967.3 \mathrm{~kJ} / \mathrm{mol}$
(iii) $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~g})$
$\Delta \mathrm{H}=-84.2 \mathrm{~kJ} / \mathrm{mol}$
(iv) $\mathrm{PCl}_{3}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{POCl}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-285.7 \mathrm{~kJ} / \mathrm{mol}$
A) $-110.5 \mathrm{~kJ} / \mathrm{mol}$
B) $-2682.2 \mathrm{~kJ} / \mathrm{mol}$
C) $-1230.6 \mathrm{~kJ} / \mathrm{mol}$
D) $-610.1 \mathrm{~kJ} / \mathrm{mol}$
E) $-7555.0 \mathrm{~kJ} / \mathrm{mol}$
11) Which of the following molecules has a trigonal pyramidal molecular geometry?
A) O_{3}
B) BF_{3}
C) AlCl_{3}
D) ClF_{3}
E) $\mathrm{ClO}_{3}{ }^{-}$
12) A chemist combines 300 mL of a $0.3 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution with 200 mL of $0.4 \mathrm{M} \mathrm{BaCl}_{2}$ solution. How much precipitate is formed?
A) 233.4 g
B) 21.0 g
C) No precipitation
D) 18.7 g
E) 58.5 g
13) In an acid-base neutralization reaction, 38.74 mL of 0.500 M potassium hydroxide reacts with 50.00 mL of sulfuric acid solution. What is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
A) 5.163 M
B) 0.775 M
C) 0.387 M
D) 1.290 M
E) 0.194 M
14) A 40.2 g sample of metal is heated to $99.3^{\circ} \mathrm{C}$ and then placed in a calorimeter containing 120.0 g of water ($\mathrm{c}=4.18$ $\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$) at $21.8^{\circ} \mathrm{C}$. The final temperature of the water is $24.5^{\circ} \mathrm{C}$. Which metal was used? Assume no loss or gain of heat from the surroundings.
A) Iron $\left(c=0.45 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
B) Aluminum $\left(c=0.89 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
C) Lead $\left(c=0.14 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
D) None of these
E) Copper $\left(\mathrm{c}=0.20 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
15) When 1.89 g of benzoic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ undergoes combustion in a bomb calorimeter at $25^{\circ} \mathrm{C}$, the released heat causes a rise in the temperature of 18.94 kg water by $0.6320^{\circ} \mathrm{C}$. Given that the specific heat capacity of water at $25^{\circ} \mathrm{C}$ is 0.998 $\mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$, what is the molar heat of combustion of benzoic acid?
A) -771.1 kcal
B) -981.1 kcal
C) -881.1 kcal
D) -251.1 kcal
E) -11.946 kcal
16) Which of the following molecules has a different electron group geometry than the others?
A) XeF_{4}
B) BrF_{5}
C) SF_{6}
D) XeO_{3}
E) $\mathrm{ICl}_{4}{ }^{-}$
17) 20.00 moles of helium gas are mixed with 5.00 moles of oxygen gas in a 15.00 L container at $22^{\circ} \mathrm{C}$. Calculate the partial pressure of helium gas in the container after the temperature drops to $8^{\circ} \mathrm{C}$.
A) 30.8 atm
B) 1.52 atm
C) 40.4 atm
D) 32.3 atm
E) 38.5 atm
18) According to Molecular Orbital theory, which of the following species has the shortest bond length?
A) C_{2}
B) N_{2}
C) F_{2}
D) O_{2}
E) Li_{2}
19) The Lewis structure of the propionic acid compound is as follows.

Accordingly, between which atoms does the largest bond angle occur?
A) g-f-h
B) $\mathrm{b}-\mathrm{d}-\mathrm{f}$
C) f-h-i
D) e-d-f
E) a-b-c
20) While CO_{2} gas diffuses at 6 cm per second in a glass pipe, how many cm does CO gas diffuse within the same duration in the same pipe?
A) 9.8 cm
B) 6.0 cm
C) 3.2 cm
D) 7.5 cm
E) 4.8 cm

Answer Key
Testname: MIDTERM-2-EN-A

1) A
2) A
3) D
4) D
5) A
6) A
7) E 8) A 9) C
8) D
9) E
10) D
11) E
12) A
13) A
14) D
15) A
16) B
17) A
18) D
