Booklet A KIM101E			Midterm-1						Ι	March 17, 2024						
Group Number	:					Surnar	ne :							Sigr	ature	
List Number	:					Name	:									
Student Number	:					e-mail	:									
1						•							•			18
1 H 1,008 2											13	14	15	16	17	2 He 4,003
2 Li Be 6,94 9,012	2										5 B 10,81	6 C 12,01	7 N 14,01	8 0 16,00	9 F 19,00	10 Ne 20,18
³ Na Mg 22,99 24,31	3	4	5	6	7	8	9	10	11	12	13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,95
4 K Ca 39,10 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,97	35 Br 79,90	36 Kr 83,80
5 Rb Sr 85,47 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,95	43 Tc	44 Ru 101,1	45 Rh 102,9	46 Pd 106,4	47 Ag 107,9	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,8	52 Te 127,6	53 I 126,9	54 Xe 131,3
⁶ Cs Ba 132,9 137,3	57-71	72 Hf 178,5	73 Ta 180,9	74 W 183,8	75 Re 186,2	76 Os 190,2	77 Jr 192,2	78 Pt 195,1	79 Au 197,0	80 Hg 200,6	81 Tl 204,4	82 Pb 207,2	83 Bi 209,0	84 Po	85 At	86 Rn
7 Fr Ra	89-103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
		57 La 138,9 89 Ac	58 Ce 140,1 90 Th 232.0	59 Pr 140,9 91 Pa 231.0	60 Nd 144,2 92 U 238 0	61 Pm 93 Np	62 Sm 150,4 94 Pu	63 Eu 152,0 95 Am	64 Gd 157,3 96 Cm	65 Tb 158,9 97 Bk	66 Dy 162,5 98 Cf	67 Ho 164,9 99 Es	68 Er 167,3 100 Fm	69 Tm 168,9 101 Md	70 Yb 173,0 102 No	71 Lu 175,0 103 Lr
c	= 2.998>	<10 ⁸ m	n s ⁻¹ g	; = 9.8 :	m s ⁻²	h = 6	5.626×1	10 ⁻³⁴ J	s Rj	H = 2.1	79×10 ⁻	18 J	0°C	= 273	K	
Ν	A = 6.02	2×10 ²³		1 cal =	= 4.184	J 1	m = 10	⁹ nm =	1010	$Å = 10^{1}$	12 pm	1 g	$s = 10^3$	mg = 1	.0 ⁶ μg	
1	atm =	760 m	mHg	= 760) torr	= 10)1325 I	Pa =	101.	325 kP	a =	1.0132	5 bar			
R	= 0.082	06 L at	tm mol	-1 K-1	= 0.08.	314 L b	ar mol ⁻	-1 K-1	= 8.314	4 J mol	-1 K-1	= 8.31	4 L kPa	a mol ⁻¹	K-1	
F	or water:		c = 4.1	84 J g ⁻	¹ K ⁻¹	K	f = 1.86	5 K kg	mol ⁻¹	Kł	0 = 0.51	2 K kg	; mol ⁻¹			
1	Newton	(N) =	1 kg m	s-2	1 Jo	oule (J)	= 1 N r	n = 1 k	g m ² s ⁻	2	1 Wa	tt (W)	= 1 J s	-1		

- 1) A jewelry alloy has a density of 12.412 g/ cm³ and is 75.0% gold by mass. If 522 g of gold is available, what is the volume of this alloy that can be produced?
 - A) $8.64 \times 10^3 \text{ cm}^3$
 - B) 31.5 cm³
 - C) $4.86 \times 10^3 \text{ cm}^3$
 - D) 335 cm³
 - E) 56.1 cm³

2) Which of the following is INCORRECT?

- A) Matter is made of tiny units called atoms.
- B) An element is a substance made of one type of atom.
- C) A compound contains regions that are unlike other regions of the same compound.
- D) Homogeneous mixtures are solutions.
- E) Elements and compounds are substances.
- 3) The two naturally occurring isotopes of nitrogen have masses of 14.0031 and 15.0001 amu, respectively. Determine the percentage of ¹⁵N atoms in nitrogen. The average mass of nitrogen is 14.0067 amu.

A) 0.4% B) 0.04% C) 99.6% D) 9.6% I	3) 4%
-------------------------------------	-------

Booklet A

4) When a solid mixture co products are evolved and water, what is the mass	onsisting of 10.500 g of a d 14.336 g of a solid resi	calcium hydroxide and 11 idue remains. When the ga	.125 g ammonium chlorid aseous products are passe	le is heated, gaseous d into 62.316 g of
A) 69.605 g	B) 83.941 g	C) 28.914 g	D) 76.652 g	E) 35.961 g
5) What is the approximate $(e = 1.602 \times 10^{-19} \text{ C})$ and	e mass-to-charge ratio va	lue (m/e) in coulombs per neutron is 1.67×10^{-24} g)	gram for the ion ³² S ²⁻ ?	
A) 1.67×10^{-4}	B) 3.35×10^{-4}	C) 4.17×10^{-5}	D) 1.85 × 10 ⁻⁵	E) 5.99 × 10 ⁻⁴
6) An isotope with atomic carbon-12 What is the a	number 64 and mass nur atomic mass of this isoto	mber 158 is found to have ne relative to oxygen-16?	a mass ratio of 13.16034 The atomic mass of ¹⁶ 0	relative to that of
A) 7.9780	B) 10.1216	C) 9.8734	D) 12.0060	E) 14.9897
7) Without detailed calcula A) 662 nm	ations, which of the follo B) 2.1×10^{-5} cm	wing electromagnetic rad C) 3.58 μm	iations has the greatest en D) 4.1×10^{-6} m	ergy per photon? E) 0.22 mm
8) In the following system,	, which of the following	possible values is the mis	sing quantum number?	
$n = 3, \ell = ?, m_{\ell} = 2, and$	$1 m_s = +1/2$			
A) 0	B) 1	C) 2	D) 3	E) -1/2
9) Which of the following A) S	atoms should have the set B) Si	mallest polarizability? C) Te	D) At	E) Cs
10) The electron configurati orders is correct for the	on of elements A, B, and first ionization energies	l C are [He]2s ¹ , [Ne]3s ¹ , a (in kJ/mol) of A, B, and C	and [Ar]4s ¹ respectively. ¹ 2?	Which of the following
A) $C > B > A$	B) B > C > A	C) C > A > B	D) $A > B > C$	E) $A > C > B$
11) What is the wavelength characterized by $n = 4$ to	of the light (in nm) emit	ted when the electron in a ith $n = 2$?	hydrogen atom moves fr	om an energy level
A) 567 nm	B) 728 nm	C) 486 nm	D) 364 nm	E) 243 nm
12) The speed of the electro picometers for this elect	n in the hydrogen atom i ron. The mass of the ele	is one-137th of the speed of t	of light. Calculate the de	Broglie wavelength in
A) 194 pm	B) 332 pm	C) 33.2 pm	D) 43.6 pm	E) 436 pm
13) Calculate the mass in gr	rams for a single carbon of	dioxide, CO ₂ , molecule.		
A) 6.8 × 10 ⁻²³ g	B) 7.3 × 10 ⁻²³ g	C) 8.1×10^{-23} g	D) 9.4 × 10 ⁻²³ g	E) 10.8×10^{-23} g
14) In which of the followin K ₂ <u>Cr</u> O ₄ , [<u>Pt</u> Cl ₆] ²⁻ , <u>O</u> ₃ , H A) 6+, 4+, 2-, 1-, 5+	ng are the oxidation stage I2 <u>O</u> 2, H <u>CI</u> O3	es of the labeled atoms in	the molecules below give	n correctly, in order?
B) 4+, 4+, 2-, 1-, 5+				
C) 4+, 4+, 0, 1-, 5+				
E) 6+, 4+, 0, 2-, 3+ E) 6+, 4+, 0, 1-, 5+				
15) What is the empirical fo	rmula of a compound co	ntaining 0.130 g of nitrog	en and 0.370 g of oxygen	1?
A) NO ₂	B) NO ₃	C) N ₂ O ₄	D) N ₂ O ₅	E) N ₃ O ₅
16) What is the mass percen	tage of NH ₃ in the comp	ound Co(NH ₃) ₆ Cl ₃ ?		

6) What is the mass pe	ercentage of NH ₃ in the co	ompound Co(NH ₃) ₆ Cl ₃ ?		
A) 29.5	B) 34.6	C) 38.2	D) 45.7	E) 49.1

Booklet A

- 17) What is the sum of the coefficients of all species in the balanced reaction equation for the complete combustion of malonic acid, a compound with 34.62% C, 3.88% H, and 61.50% O, by mass with oxygen?
 A) 10
 B) 9
 C) 6
 D) 7
 E) 8
- 18) PCl₃ is used as an insecticide. When the reaction shown below occurred with 80% yields, 274.6 g of PCl₃ was obtained. If an excess Cl₂ was used in the reaction, how many grams of P₄ were used in the beginning of the reaction?
 P₄ (s) + Cl₂ (g) → PCl₃ (s) (unbalanced)
 A) 77.4 g
 B) 124.0 g
 C) 62.0 g
 D) 248.0 g
 E) 89.0 g

19) Rank the concentrations of the following solutions from highest to lowest.

- I) 125 mL solution containing 2.25×10^{-2} mol NaOH
- II) 1.25 L solution containing 57.5 g KCl

III) Solution prepared by adding 18.5 mL glycerin, C₃H₅(OH)₃, with a density of 1.26 g/mL to 575 mL.

A) I > II > III B) II > I > III C) II > III > I D) III > I > II E) III > II > II > I

20) To prepare 250 mL of 0.425 M AgNO₃ solution, how many mL of 1.5 M AgNO₃ solution should be taken and diluted with water?

A) 141.5 mL B) 70.8 mL C) 283.2 mL D) 35.4 mL E) 17.7 mL

Answer Key Testname: MIDTERM-1_EN-A

1) E 2) C 3) A 4) A 5) A 6) C 7) B 8) C 9) A 10) D 11) C 12) B 13) B 14) E 15) D 16) C 17) E 18) A 19) C

19) C 20) B