Boo	klet A			K	IM10	1E			F	INA	L					May	y 31, 2	2024
Grou	p Numt	ber	:					Surna	me :							Sigr	ature	
List I	Number		:					Name	:									
Stude	ent Nun	ıber	:					e-mail	:									
	1																	18
1	1 H 1,008	z											13	14	15	16	17	2 He 4,00
2	3 Li 6,94	4 Be 9,012											5 B 10,81	6 C 12,01	7 N 14,01	8 0 16,00	9 F 19,00	10 Ne 20,1
3	11 Na 22,99	12 Mg 24,31	3	4	5	6	7	8	9	10	11	12	13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,9
4	19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,97	35 Br 79,90	36 Kr 83,8
5	37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,95	43 Tc	44 Ru 101,1	45 Rh 102,9	46 Pd 106,4	47 Ag 107,9	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,8	52 Te 127,6	53 I 126,9	54 Xe 131,
6	55 Cs 132,9	56 Ba 137,3	57-71	72 Hf 178,5	73 Ta 180,9	74 W 183,8	75 Re 186,2	76 Os 190,2	77]r 192,2	78 Pt 195,1	79 Au 197,0	80 Hg 200,6	81 Tl 204,4	82 Pb 207,2	83 Bi 209,0	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89-10	8 104 Rf	105 Db	106 Sg	107 Bh	108 Hs	1D9 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 0g
				57 La 138,9	58 Ce 140,1	59 Pr 140,9	60 Nd 144,2	61 Pm	62 Sm 150,4	63 Eu 152,0	64 Gd 157,3	65 Tb 158,9	66 Dy 162,5	67 Ho 164,9	68 Er 167,3	69 Tm 168,9	70 Yb 173,0	71 Lu 175,
				89 Ac	90 Th 232,0	91 Pa 231,0	92 U 238,0	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
		c	= 2.998	×10 ⁸ n	ns-1 g	g = 9.8	m s-2	h = 0	6.626×1	10-34 J	s R	ц = 2.1	79×10 ⁻	-18 J	0°C	2 = 273	K	
		Ν	A = 6.0	2×10 ²³	3	1 cal =	= 4.184	J 1	m = 10	9 nm =	= 1010	Å = 10	12 pm	1 g	$g = 10^3$	mg = 1	10 ⁶ μg	
		1	atm =	760 n	ımHg	= 76	0 torr	= 10	01325 I	Pa =	101.	325 kP	a =	1.0132	25 bar	U		
		R	= 0.082	206 L a	tm mol	-1 K-1	= 0.083	314 L t	oar mol [.]	-1 K-1	= 8.31	4 J mol	-1 K-1	= 8.31	4 L kPa	a mol-1	K-1	
		Fo	or water		c = 4.1	84 J g ⁻	⁻¹ K ⁻¹	K	f = 1.86	5 K kg	mol-1	K	n = 0.51	2 K kg	g mol ⁻¹			
		1	Newton	(N) =	1 kg m	s-2	1 Jo	ule (J)	= 1 N r	n = 1 k	g m ² s	-2	1 Wa	tt (W)	= 1 J s	-1		
					6			- (-)			~							

- Silver has two naturally occurring isotopes: The ¹⁰⁷Ag isotope has a mass of 106.91 amu, while the ¹⁰⁹Ag isotope has a mass of 108.90 amu. What are the percent relative abundances of ¹⁰⁷Ag and ¹⁰⁹Ag isotopes, respectively? The atomic mass of silver is 107.87 amu.
 - A) 34.4% 65.6%
 B) 64.7% 35.2%
 C) 51.8% 48.2%
 D) 65.6% 34.4%
 E) 48.2% 51.8%

2) What is the energy (in Joules) of one mole of photons with a wavelength of 474 nm?

A) 4.00×10^{-19} J B) 4.19×10^{-19} J C) 2.09×10^{-19} J D) 2.53×10^{5} J E) 4.19×10^{5} J

3) Calculate the pH of a 0.800 M aqueous solution of CH₃CO₂Na. $K_a = 1.8 \times 10^{-5}$ for acetic acid (CH₃CO₂H)

A) 2.42	B) 4.68	C) 9.32	D) 11.38	E) 13.64

Booklet A

4) Given the tabulated data for potassium fluoride (KF) ionic salt, what is the electron affinity for fluorine atom?

the enthalpy of sublimati	on for potassium	+89.24 kJ	l/mol	
first ionization energy fo	r potassium	+418.90 k	xJ/mol	
dissociation energy of F-	F bond	+159.00 k	xJ/mol	
enthalpy of formation for	r potassium fluoride	-567.30 k	xJ/mol	
lattice enthalpy of crysta	lline potassium fluoride	-826.94 k	xJ/mol	
A) -847 kJ/mol	B) –288 kJ/mol	C) -408 kJ/mol	D) –328 kJ/mol	E) –926 kJ/mol

5) The decomposition of ammonia is

 $2NH_{3}\left(g\right) \rightarrow N_{2}\left(g\right) + 3H_{2}\left(g\right).$

If K_p is 1.5×10^3 at 400°C, what is the partial pressure of ammonia at equilibrium when the equilibrium partial pressure of N₂(g) is 0.10 bar and that of H₂(g) is 0.15 bar?

A) 2.2×10^{-7} bar B) 4.7×10^{-4} bar C) 1.0×10^{-5} bar D) 4.4×10^{6} bar E) 3.1×10^{-3} bar

6) Which atom in each group (I) and (II) has the smallest atomic radius? (I) Ba, Hf, At (II) As, Sb, Bi

A) Ba, AsB) Ba, BiC) At, AsD) At, Bi	E) Hf, As

7) How much heat is released when a mixture of gases containing 10.0 g of NH_3 (g) and 20.0 g of O_2 (g) react according to the following equation?

$4NH_{3}\left(g\right) +5O_{2}\left(g\right) -$	→ $4NO(g) + 6H_2O(g);$	$\Delta H^\circ = -906 \text{ kJ}$		
A) 96.5 kJ	B) 169.5 kJ	C) 56.5 kJ	D) 84.7 kJ	E) 113.3 kJ

8) Arrange the following compounds in order of increasing boiling point:

pentane (CH3CH2CH2CH2CH3), methyl butane (CH3CH(CH3)CH2CH3), neopentane (CH3C(CH3)3).

- A) pentane < methyl butane < neopentane
- B) neopentane < methyl butane < pentane
- C) neopentane < pentane < methyl butane
- D) pentane < neopentane < methyl butane
- E) methyl butane < pentane < neopentane
- 9) An unknown nonvolatile compound is composed of 65.44% C, 29.07% O, and 5.49% H. When 5.34 g of this compound is dissolved in 60.00 g H₂O, the solution's freezing point was measured as -0.600° C. What is the molecular formula of the compound?

D) C₁₄H₁₀O₅

E) C7H5O3

	1	
A)	C ₃ H ₃ O	

B) C9H9O3 C) C15H15O5

- 10) According to the VSEPR theory, which of the following is the electron group geometry of AsCl₄-?
 - A) square planar
 - B) seesaw
 - C) square pyramidal
 - D) trigonal bipyramidal
 - E) tetrahedral
- Barium element has a density of 3.59 g/cm³ and crystallizes in the body-centered cubic unit cell. Calculate the radius of a barium atom in pm.

A) 503 pm	B) 251 pm	C) 136 pm	D) 399 pm	E) 633 pm
-----------	-----------	-----------	-----------	-----------

12) Two solutions contain the same amount of water as a solvent. One of the solution includes 0.5 mol glucose ($C_6H_{12}O_6$) while the other contains 0.2 mol of CaCl₂. If the freezing points of both solutions are the same, determine the van't Hoff (*i*) factor for the CaCl₂ solution

A) 2.50 B) 3.00 C) 1.50 D) 2.75 E) 0.40

Booklet A

13) Nitrogen, N ₂ , is solu	uble in blood and can cause	intoxication at sufficient	concentration. For this re	ason, the U.S. Navy
of nitrogen at 1.00 a solubility of nitroge	atm is 1.75×10^{-3} g/100 mI cm in 100 mL water from air	L of water, and the mole j at 4.79 atm?	percent of nitrogen in air i	s 78.1, what is the
A) 0.00884 g	B) 0.00982 g	C) 0.04910 g	D) 0.00655 g	E) 0.00491 g
14) A 125 g stainless sto styrofoam cup. As a vaporizes while the	eel ball beaming ($c = 0.50$ J a result, the water is brough boiling is continuous?	g^{-1} °C ⁻¹) at 525°C is druct to a boil when the temperature	opped into 75.0 mL of wa erature reaches 100.0°C. V	ter at 28.5°C in an open What mass of water
$(\Delta H_{vap} = 40.6 \text{ kJ m})$	nol ⁻¹ for water, assume that	the density of water is 1.	$00 \text{ g mL}^{-1} \text{ at } 28.5^{\circ}\text{C}$	
A) 1.78 g	B) 1.83 g	C) 2.05 g	D) 2.83 g	E) 4.13 g
boiling point is -6.4 A) 245.5 kJ/mol B) 23453.0 kJ/mol C) 25.4 kJ/mol D) 34.6 kJ/mol E) 23.5 kJ/mol	d°C. ol			
16) Which of the follow	ving statements about viscos	sity are true?		
I) Viscosity is the	e liquid's resistance to flow.			
II) Viscosity decre	eases with a decrease in tem	perature.		
III) Viscosity is not	t related to the forces between	en molecules in a liquid.		
IV) Viscous liquids	s have low-rate flows.			
A) I and II	B) I and III	C) I and IV	D) II and IV	E) III and IV

17) According to Molecular Orbital theory, which is the **INCORRECT** statement for C_2^- ?

- A) The σ_{2p} orbital has two electrons.
- B) There is one unpaired electron.
- C) The bond order of molecule is 2.5.
- D) The molecule is paramagnetic.
- E) The π_{2p} orbitals have four electrons.
- 18) The following equilibrium corresponds to the reaction of hydrogen sulfide with methane to produce carbon disulfide and hydrogen gas.

 $CH_4(g) + 2H_2S(g) \rightleftharpoons CS_2(g) + 4H_2(g); \Delta H = +232.5 \text{ kJ}$

Accordingly, which of the following(s) should be done to proceed with the reaction to the right?

I) Increasing the temperatu	re			
II) Decreasing the volume				
III) Increasing the pressure				
IV) Increasing the volume				
V) Adding a catalyst				
A) Only I	B) I, II, and III	C) I and IV	D) I, II, III, V	E) I, IV, and V

19) For the reaction $2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$, $K_c = 1.8 \times 10^{-6}$ at 184°C. What is the value of K_p for the following

reaction at 184°C?	NO (g) + $\frac{1}{2}$ O ₂ (g) \rightleftharpoons N	$O_2(g)$		
A) 2.2×10^{-8}	B) 49.2	C) 2.2 × 10 ⁻⁴	D) 121.7	E) 2896.3

20) Hypochlorous acid (HOCl) has an ionization (dissociation) constant of 3.2×10^{-8} . Calculate the percent ionization of 1.0 M HOCl solution.

	A) 0.018%	B) 0.032%	C) 0.57%	D) 1.79%	E) 17.90%
--	-----------	-----------	----------	----------	-----------

Answer Key Testname: FINAL-A-EN

1) C 2) D 3) C 4) D 5) B 6) C 7) E 8) B 9) C 10) D 11) A 12) A 13) D 14) B 15) E 16) C 17) A 18) C 19) D 20) A