Group Number	$:$	Surname	$:$
List Number	$:$	Name $\quad:$	
Student Number	$:$	e-mail	$:$

	1																	18
1	1 H 1,008	2											13	14	15	16	17	2 He 4,003
2	3 Li 6,94	4 $B e$ 9,012											5 B 10,81	6 C 12,01	7 N 14,01	$\begin{array}{\|c\|} \hline 8 \\ 0 \\ 16,00 \end{array}$	9 F 19,00	10 Ne 20,18
3	11 Na 22,99	12 Mg 24,31	3	4	5	6	7	8	9	10	11	12	13 Al 26,98	14 Si 28,09	15 P 30,97	$\begin{gathered} 16 \\ s \\ 32,06 \end{gathered}$	$\begin{array}{\|c\|} \hline 17 \\ \mathrm{Cl} \\ 35,45 \end{array}$	
4	19 K 39,10	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40,08 \end{gathered}$	21 $S c$ 44,96		23 V 50,94	24 Cr 52,00	25 $M n$ 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 63,55	$\begin{array}{\|c\|} \hline 30 \\ \mathrm{Zn} \\ 65,38 \end{array}$	31 $G a$ 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,97	35 Br 79,90	36 Kr 83,80
5	37 $R \mathrm{R}$ 85,47				41 Nb 92,91	42 $M 0$ 95,95	43 TC	44 Ru 101,1	45 Rh 102,9	46 Pd 106,4	47 Ag 107,9	\square	49 In 14,8	50 Sn 118,7	51 Sb 121,8	52 Te 127,6	53 I 126,9	54 Ke 131,3
6	55 C_{5} 132,9	56 $B a$ 137,3	57-71		73 Ta 180,9	74 W 183,8	75 $R e$ 186,2	76 05 190,2	$\begin{array}{\|c\|} \hline 77 \\ \mathrm{lr} \\ 192,2 \end{array}$	78 Pt 195,1	79 Au 197,0	80 Hg 200,6	81 TI 204,4	82 Pb 207,2	83 Bi 209,0	84 Po	B5	86 Rn
7	87 Fr	88 Ra	9-107	104	$\begin{gathered} 105 \\ \mathrm{Db} \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \end{gathered}$	$\begin{gathered} 107 \\ \mathrm{Bh} \end{gathered}$	108 Hs	109	110	111 $R g$	$\begin{gathered} 112 \\ \mathrm{Cn} \end{gathered}$	$\begin{aligned} & 113 \\ & \mathrm{Nh} \end{aligned}$	$\begin{gathered} 114 \\ \mathrm{FI} \end{gathered}$	$\begin{aligned} & 115 \\ & \mathrm{Mc} \end{aligned}$	$\begin{gathered} 116 \\ \mathrm{LV} \end{gathered}$	117 Ts	$\begin{gathered} 118 \\ \mathrm{Og} \end{gathered}$
				57 La 138,9	58 Ce 140,1	59 Pr 140,9	$\begin{array}{\|c\|} \hline 60 \\ \mathrm{Nd} \\ 144,2 \end{array}$	61 Pm	62 $5 m$ 150,4	63 Eu 152,0	64 Gd 157,3	$\begin{array}{\|c\|} \hline 65 \\ \mathrm{~Tb} \\ 158,9 \end{array}$	66 $D y$ 162,5	$\begin{array}{\|c\|} \hline 67 \\ \mathrm{Ho} \\ 164,9 \\ \hline \end{array}$	68 $E r$ 167,3	69 Tm 168,9	70 Yb 173,0	71 Lu 175,0
				A9			92 U 238,0	93 Np	94 Pu	$\begin{aligned} & 95 \\ & \text { Am } \end{aligned}$	$\begin{aligned} & 96 \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & 97 \\ & \text { Bk } \end{aligned}$	Cf	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{gathered} 100 \\ \mathrm{Fm} \end{gathered}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$	$\begin{gathered} \hline 103 \\ \text { Lr } \end{gathered}$

$\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \quad \mathrm{~g}=9.8 \mathrm{~m} \mathrm{~s}^{-2} \quad \mathrm{~h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \quad \mathrm{R}_{\mathrm{H}}=2.179 \times 10^{-18} \mathrm{~J} \quad 0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \quad 1 \mathrm{cal}=4.184 \mathrm{~J} \quad 1 \mathrm{~m}=10^{9} \mathrm{~nm}=10^{10} \AA=10^{12} \mathrm{pm} \quad 1 \mathrm{~g}=10^{3} \mathrm{mg}=10^{6} \mu \mathrm{~g}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}=760$ torr $=101325 \mathrm{~Pa}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}$
$1 \mathrm{~atm} . \mathrm{L}=101.325 \mathrm{~J}$
$\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=0.08314 \mathrm{~L}^{\mathrm{bar} \mathrm{mol}}{ }^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~L} \mathrm{kPa} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
For water: $\quad \mathrm{c}=4.184 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1} \quad \mathrm{~K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \quad \mathrm{~K}_{\mathrm{b}}=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
1 Newton $(\mathrm{N})=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2} \quad 1$ Joule $(\mathrm{J})=1 \mathrm{Nm}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \quad 1$ Watt $(\mathrm{W})=1 \mathrm{~J} \mathrm{~s}^{-1}$

1) Toluene-2,4-diisocyanate is used in the manufacture of polyurethane foam. An incomplete structure is shown on the right side. What are the values of the bond angles marked α and β in the compound?

A) $\alpha=120^{\circ}, \beta=180^{\circ}$
B) $\alpha=120^{\circ}, \beta=120^{\circ}$
C) $\alpha=109.5^{\circ}, \beta=120^{\circ}$
D) $\alpha=109.5^{\circ}, \beta=180^{\circ}$
E) $\alpha=180^{\circ}, \beta=120^{\circ}$
2) If the atomic radius of Aluminum which crystallizes in a face-centered-cubic unit cell is r, what is the volume of the unit cell?
A) $\left(\frac{2 r}{\sqrt{2}}\right)^{3}$
B) $\left(\frac{4 r}{\sqrt{2}}\right)^{3}$
C) $\left(\frac{2 r}{\sqrt{3}}\right)^{3}$
D) $\left(\frac{4 r}{\sqrt{3}}\right)^{3}$
E) $\left(\frac{3 r}{\sqrt{2}}\right)^{3}$

Booklet A

3) A 0.72 g sample of polyvinyl chloride (PVC, non-electrolyte) is dissolved in 250 mL of a suitable solvent at $25^{\circ} \mathrm{C}$. The solution has an osmotic pressure of 1.67 mmHg . What is the molar mass of PVC?
A) $2.7 \times 10^{-3} \mathrm{~g} / \mathrm{mol}$
B) $2.7 \times 10^{3} \mathrm{~g} / \mathrm{mol}$
C) $2.7 \times 10^{4} \mathrm{~g} / \mathrm{mol}$
D) $3.5 \times 10^{4} \mathrm{~g} / \mathrm{mol}$
E) $3.2 \times 10^{4} \mathrm{~g} / \mathrm{mol}$
4) Which of the following species has bond order $\mathbf{2}$ according to molecular orbital theory? $\quad \mathrm{N}_{2}, \mathrm{~N}_{2}{ }^{2+}, \mathrm{N}_{2}{ }^{3+}, \mathrm{N}_{2}{ }^{-}, \mathrm{N}_{2}{ }^{2-}$
A) Only $\mathrm{N}_{2}{ }^{2+}$
B) N_{2} and $\mathrm{N}_{2}{ }^{-}$
C) $\mathrm{N}_{2}{ }^{3+}$ and $\mathrm{N}_{2}{ }^{2-}$
D) $\mathrm{N}_{2}{ }^{2+}$ and $\mathrm{N}_{2}{ }^{2-}$
E) $\mathrm{N}_{2}{ }^{-}$and $\mathrm{N}_{2}{ }^{2-}$
5) Which of the following compounds has the same central atom hybridization as in the $\mathrm{XeF}_{3}{ }^{+}$molecule?
A) $\mathrm{ClO}_{2}{ }^{-}$
B) SnI_{2}
C) POF_{3}
D) $\mathrm{IF}_{2}{ }^{+}$
E) ICl_{2}^{-}
6) Which of the following compounds can form hydrogen bonding?
A) O_{3}
B) NO
C) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
D) NH_{3}
E) $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$
7) The atomic radius of a face-centered-cubic metal is $\frac{\sqrt{2}}{10} \mathrm{~nm}$. The atomic mass of the metal is $24.092 \mathrm{~g} / \mathrm{mol}$. What is the density of the metal in $\mathrm{kg} / \mathrm{m}^{3}$?
A) $2500 \mathrm{~kg} / \mathrm{m}^{3}$
B) $250 \mathrm{~kg} / \mathrm{m}^{3}$
C) $25 \mathrm{~kg} / \mathrm{m}^{3}$
D) $2.5 \mathrm{~kg} / \mathrm{m}^{3}$
E) $0.25 \mathrm{~kg} / \mathrm{m}^{3}$
8) A piece of stainless steel $\left(\mathrm{c}_{p}=0.50 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)$ is transferred from an oven at $201^{\circ} \mathrm{C}$ into 150 mL of water at $23.2^{\circ} \mathrm{C}$. The water temperature rises to $55.4^{\circ} \mathrm{C}$. What is the mass of the steel?
A) $5.67 \times 10^{3} \mathrm{~kg}$
B) $2.8 \times 10^{2} \mathrm{~g}$
C) $5.67 \times 10^{3} \mathrm{~g}$
D) $2.8 \times 10^{2} \mathrm{~kg}$
E) 2.8 g
9) Which of the following molecules has the square planar geometry?
A) SF_{4}
B) CH_{4}
C) XeF_{4}
D) XeO_{4}
E) ClO_{4}^{-}
10) Arrange the following in the order of increasing boiling point: $\mathrm{Ne}, \mathrm{O}_{2}, \mathrm{He}, \mathrm{Cl}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}, \mathrm{O}_{3}$
A) $\mathrm{He}<\mathrm{O}_{2}<\mathrm{Ne}<\mathrm{O}_{3}<\mathrm{Cl}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
B) $\mathrm{He}<\mathrm{Ne}<\mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{Cl}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
C) $\mathrm{He}<\mathrm{Ne}<\mathrm{O}_{3}<\mathrm{O}_{2}<\mathrm{Cl}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
D) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}<\mathrm{Cl}_{2}<\mathrm{O}_{3}<\mathrm{O}_{2}<\mathrm{Ne}<\mathrm{He}$
E) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}<\mathrm{Cl}_{2}<\mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{Ne}<\mathrm{He}$
11) Which of the following molecules has the smallest bond angle?
A) XeF_{2}
B) BF_{3}
C) CN^{-}
D) $\mathrm{H}_{2} \mathrm{O}$
E) SO_{3}
12) The vapor pressure of pure water at $85^{\circ} \mathrm{C}$ is 434 torr. What is the vapor pressure $85^{\circ} \mathrm{C}$ of a solution prepared from 100 mL of water and 150 g of diglyme, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{3}$, a non-volatile substance?
A) 73 Torr
B) 88 Torr
C) 361 Torr
D) 401 Torr
E) 434 Torr
13) Consider an aluminum sphere with a mass of 0.047 kg initially heated to $100^{\circ} \mathrm{C}$. Subsequently, the heated sphere is released into a copper calorimeter which has a mass of 0.14 kg and contains 0.25 kg of water at an initial temperature of $20^{\circ} \mathrm{C}$. As the system reaches thermal equilibrium, the temperature of the water stabilizes at $23^{\circ} \mathrm{C}$. Determine the specific heat capacity of aluminum, given the specific heat capacities of copper as $0.386 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1{ }^{\circ}} \mathrm{C}^{-1}$.
A) $119 \mathrm{~J} \mathrm{~kg}^{-10} \mathrm{C}^{-1}$
B) $45.66 \mathrm{~J} \mathrm{~kg}^{-10} \mathrm{C}^{-1}$
C) $0.911 \mathrm{~J} \mathrm{~kg}^{-10} \mathrm{C}^{-1}$
D) $911 \mathrm{~J} \mathrm{~kg}^{-1{ }^{\circ} \mathrm{C}^{-1}}$
E) $0.119 \mathrm{~J} \mathrm{~kg}^{-10} \mathrm{C}^{-1}$

Booklet A

14) Calculate the value of $\Delta \mathrm{H}^{\circ}$ for the following reaction
$\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow 10 \mathrm{POCl}_{3}(\mathrm{~g}) \quad$ using the following equations:
(i) $\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-1225.6 \mathrm{~kJ} / \mathrm{mol}$
(ii) $\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s}) \quad \Delta \mathrm{H}^{\circ}=-2967.3 \mathrm{~kJ} / \mathrm{mol}$
(iii) $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-84.2 \mathrm{~kJ} / \mathrm{mol}$
(iv) $\mathrm{PCl}_{3}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{POCl}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-285.7 \mathrm{~kJ} / \mathrm{mol}$
A) -610.1 kJ
B) -2857.0 kJ
C) 1620.5 kJ
D) 1841.1 kJ
E) 5103.9 kJ
15) Methanol has a normal boiling point of $64.6^{\circ} \mathrm{C}$ and heat of vaporization $\left(\Delta \mathrm{H}_{\text {vap }}\right)$ of $35.2 \mathrm{~kJ} / \mathrm{mol}$. What is the vapor pressure of methanol at $12.0^{\circ} \mathrm{C}$?
A) 75.3 mmHg
B) 86.9 mmHg
C) 186.9 mmHg
D) 900.1 mmHg
E) 767.4 mmHg
16) A fountain in front of the Mustafa Inan library at I.T.U., Ayazaga, has pool water at $10 \mathrm{~m}^{3}$ volume. A couple of years ago, winter was very severe and night temperatures fell to $-6^{\circ} \mathrm{C}$. What is the minimum mass of salt, NaCl , in kilograms that should be added to the fountain water to keep it from freezing? $d_{\text {water }}=1 \mathrm{~g} / \mathrm{cm}^{3}$
A) 1613 kg
B) $944 \times 10^{3} \mathrm{~kg}$
C) $1887 \times 10^{3} \mathrm{~kg}$
D) 1887 kg
E) 944 kg
17) Determine the change in internal energy ($\Delta \mathrm{U}$) for the transformation of 1 mol of water at $100^{\circ} \mathrm{C}$ to steam under 1 atm pressure. The heat of vaporization for water at $100^{\circ} \mathrm{C}$ is $40.670 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Assume steam behaves ideal gas and the density of water as $1 \mathrm{~g} / \mathrm{mL}$.
A) 3.098 kJ
B) 21.884 kJ
C) 30.582 kJ
D) 43.768 kJ
E) 37.572 kJ
18) Determine the work performed in kilojoules when an external pressure of 2.50 atm is applied, at a constant temperature of $20.0^{\circ} \mathrm{C}$, to 50.0 g of $\mathrm{N}_{2}(\mathrm{~g})$ in a 75.0 L cylinder.
A) +1.44 kJ
B) -0.14 kJ
C) +14.6 kJ
D) +0.14 kJ
E) -14.6 kJ
19) Due to the phase diagram given below, if the temperature of the substance is held constant at $-15^{\circ} \mathrm{C}$, what would be the phase change with a pressure increase from 1 atm to 30 atm ?

A) sublimation
B) melting
C) deposition
D) condensation
E) freezing
20) Which of the following is true for the SO_{3} molecule?
I) Molecular geometry is trigonal planar.
II) The molecular geometry is a trigonal pyramidal.
III) The molecule is nonpolar.
IV) Intramolecular bonds are polar.
V) The bond angles in the molecule are greater than 120°.
A) I, III
B) II, IV, V
C) I, IV, V
D) I, III, IV
E) II, III, IV

Answer Key
Testname: 24DECEMBER-MIDTERM-2-ENA

1) A
2) B
3) E
4) D
5) E
6) D
7) A
8) B
9) C
10) B
11) D
12) C
13) D
14) A
15) A
16) E
17) E
18) C
19) C
20) D
