Booklet A	KIN	M101E		N	Aidter	rm-2					Dec	. 24, 2	2023
Group Number	•		Surna	ime :							Sign	ature	
List Number	:		Name	e :									
Student Number	:		e-mai	1 :									
1			•										18
1 H 1,008 2								13	14	15	16	17	2 He 4,003
2 Li B 6,94 9,0	a 12							5 B 10,81	6 C 12,01	7 N 14,01	8 0 16,00	9 F 19,00	10 Ne 20,18
³ 11 1 Na M 22,99 24,	2 9 31 3 4	5 6	78	9	10	11	12	13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,95
4 19 2 K C 39,10 40,	21 22 3 Sc Ti 08 44,96 47,87 5	23 24 V Cr 0,94 52,00 5	25 26 Mn Fe 54,94 55,8	27 Co 5 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,97	35 Br 79,90	36 Kr 83,80
5 85,47 87,	3 39 40 Y Zr 62 88,91 91,22 9	41 42 Nb Mo 2,91 95,95	43 44 Tc Ru 101,	45 Rh 1 102,9	46 Pd 106,4	47 Ag 107,9	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,8	52 Te 127,6	53 I 126,9	54 Xe 131,3
⁶ Cs B 132,9 132	5 57-71 72 Hf 178,5 1	73 74 Ta W 80,9 183,8 1	75 76 Re Os L86,2 190,2	77 Jr 2 192,2	78 Pt 195,1	79 Au 197,0	80 Hg 200,6	81 Tl 204,4	82 Pb 207,2	83 Bi 209,0	84 Po	85 At	86 Rn
7 87 8 Fr R	3 89-103 104 a Rf	105 106 Db Sg	107 108 Bh Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
	57 La 138,9 Ac 2	58 59 Ce Pr 40,1 140,9 1 90 91 Th Pa 32,0 231.0 2	60 61 Nd Pm 144,2 93 U Np 238,0	62 Sm 150,4 94 Pu	63 Eu 152,0 95 Am	64 Gd 157,3 96 Cm	65 Tb 158,9 97 Bk	66 Dy 162,5 98 Cf	67 Ho 164,9 99 Es	68 Er 167,3 100 Fm	69 Tm 168,9 101 Md	70 Yb 173,0 102 No	71 Lu 175,0 103 Lr
	$c = 2.998 \times 10^8 \text{ m s}$	g^{-1} g = 9.8 m	s ⁻² h =	6.626×3	10 ⁻³⁴ J	s R	H = 2.1	79×10 ⁻	18 J	0 °C	= 273.	15 K	
$N_A = 6.02 \times 10^{23}$ 1 cal = 4.184 J 1 m = 10 ⁹ nm = 10 ¹⁰ Å = 10 ¹² pm 1 g = 10 ³ mg = 10 ⁶ µg													
1 atm = 760 mmHg = 760 torr = 101325 Pa = 101.325 kPa = 1.01325 bar 1 atm.L = 101.325 J													
$R = 0.08206 L atm mol^{-1} K^{-1} = 0.08314 L bar mol^{-1} K^{-1} = 8.314 J mol^{-1} K^{-1} = 8.314 L kPa mol^{-1} K^{-1}$													
For water: $c = 4.184 \text{ J g}^{-1} \text{ K}^{-1}$ $K_f = 1.86 \text{ K kg mol}^{-1}$ $K_b = 0.512 \text{ K kg mol}^{-1}$													
1 Newton (N) = 1 kg m s ⁻² 1 Joule (J) = 1 N m = 1 kg m ² s ⁻² 1 Watt (W) = 1 J s ⁻¹													

1) Toluene-2,4-diisocyanate is used in the manufacture of polyurethane foam. An *incomplete* structure is shown on the right side. What are the values of the bond angles marked α and β in the compound?

CH₃
NCO
A)
$$\alpha = 120^{\circ}, \beta = 180^{\circ}$$

B) $\alpha = 120^{\circ}, \beta = 120^{\circ}$
C) $\alpha = 109.5^{\circ}, \beta = 120^{\circ}$
D) $\alpha = 109.5^{\circ}, \beta = 180^{\circ}$
E) $\alpha = 180^{\circ}, \beta = 120^{\circ}$

2) If the atomic radius of Aluminum which crystallizes in a face-centered-cubic unit cell is r, what is the volume of the unit cell?

$$A)\left(\frac{2r}{\sqrt{2}}\right)^{3} \qquad B)\left(\frac{4r}{\sqrt{2}}\right)^{3} \qquad C)\left(\frac{2r}{\sqrt{3}}\right)^{3} \qquad D)\left(\frac{4r}{\sqrt{3}}\right)^{3} \qquad E)\left(\frac{3r}{\sqrt{2}}\right)^{3}$$

Booklet A

3) A 0.72 g sample of po	lyvinyl chloride (PVC, no	on-electrolyte) is dissolved	l in 250 mL of a suitable s	solvent at 25°C. The
solution has an osmoti	ic pressure of 1.67 mmHg	. What is the molar mass of	of PVC?	
A) 2.7 $x 10^{-3} \text{g/mol}$				
B) $2.7 \ x \ 10^3 \ \text{g/mol}$				
C) 2.7 $x 10^4$ g/mol				
D) 3.5 <i>x</i> 10 ⁴ g/mol				
E) $3.2 \times 10^4 \text{ g/mol}$				
4) Which of the followin	g species has bond order	2 according to molecular of	orbital theory? N_2 , N_2^2	$^{+}, N_2^{3+}, N_2^{-}, N_2^{2-}$
A) Only N_2^{2+}	B) N ₂ and N ₂ ⁻	C) N_2^{3+} and N_2^{2-}	D) N_2^{2+} and N_2^{2-}	E) N_2^- and N_2^{2-}
, <u>,</u> <u>,</u>	,	, 2 2	, 2 2	, , , , ,
5) Which of the followin	a compounds has the sam	e central atom hybridizati	on as in the YeF.+ molecu	169
(10^{-1})				
A) CIO_2	B) Sn_2	C) POF_3	D) IF_2	E) ICl_2
6) Which of the followin	g compounds can form hy	drogen bonding?		
A) O ₃	B) NO	C) CH ₂ =CH ₂	D) NH ₃	E) H ₃ C-O-CH ₃
	6 4 1 1 4	$\sqrt{2}$ The i	6.1 . 1: 04.00	
/) The atomic radius of a	i face-centered-cubic meta	at is $\frac{10}{10}$ nm. The atomic n	nass of the metal is 24.09	2 g/mol. what is the
density of the metal in	$k\sigma/m^{3}$			
$(\Delta) 2500 \text{ kg/m}^3$	B) 250 kg/m ³	() 25 kg/m^3	D) $2.5 kg/m^3$	F) 0.25 kg/m^3
<i>(() (() <i>() () () <i>() () () () () () <i>() () () <i>() <i>() () () () <i>() <i>() () () <i>() () <i>() () () <i>() () <i>() () () <i>() <i>() () <i>() () <i>() <i>() () <i>() <i>(, <i>)() <i>() <i>(, <i>)() <i>() <i>(, <i>)() <i>() </i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	D) 250 Kg/III	C) = Kg/III	D) = Rg/m	L) 0.20 Kg/m
9) A piece of steiplass st	$a_{2} = 0.50 \text{ L} a_{2} \circ (-1) \text{ is}$	transformed from an outon of	at 201°C into 150 mL of t	votor at 22 2°C The
8) A piece of staniess st	$eer(c_p = 0.30 \text{ Jg}^2 \text{ C}^2)$ is	transferred from an oven a	at 201°C Into 150 InL 01	water at 25.2°C. The
water temperature rise	s to 55.4°C. What is the r	nass of the steel?	$D = 0 = 10^{21}$	T : 2 0
A) $5.67 \times 10^{3} \text{ kg}$	B) 2.8×10^2 g	C) 5.6/ $x 10^3 \mathrm{g}$	D) $2.8 \times 10^2 \text{ kg}$	E) 2.8 g
9) Which of the followin	g molecules has the squar	e planar geometry?		
A) SF_4	B) CH ₄	C) XeF ₄	D) XeO ₄	E) ClO ₄ -
10) Arrange the following	; in the order of increasing	g boiling point: Ne, O2, He	, Cl ₂ , (CH ₃) ₂ CO, O ₃	
A) He < O_2 < Ne <	$O_3 < Cl_2 < (CH_3)_2CO$			
B) He < Ne < O_2 <	$O_3 < Cl_2 < (CH_3)_2CO$			
C) He $<$ Ne $<$ O ₃ $<$	$O_2 < Cl_2 < (CH_3)_2CO$			
D) $(CH_3)_2CO < Cl_2$	$< O_3 < O_2 < Ne < He$			
E) $(CH_2)_2CO < CI_2$	$< \Omega_2 < \Omega_2 < Ne < He$			
11. 3371 * 1 6 4 6 11 *				
11) Which of the followin	g molecules has the small	lest bond angle?		
A) XeF_2	B) BF_3	$C) CN^{-}$	D) H_2O	E) SO_3
12) The vapor pressure of	pure water at 85°C is 434	torr. What is the vapor pr	essure 85°C of a solution	prepared from 100 mL $$
of water and 150 g of	diglyme, C ₆ H ₁₄ O ₃ , a non-	volatile substance?		
A) 73 Torr	B) 88 Torr	C) 361 Torr	D) 401 Torr	E) 434 Torr
13) Consider an aluminum	n sphere with a mass of 0.	047 kg initially heated to 1	100°C. Subsequently, the	heated sphere is
released into a copper	calorimeter which has a r	nass of 0.14 kg and contai	ns 0.25 kg of water at an	initial temperature of
20°C. As the system r	eaches thermal equilibriu	m, the temperature of the v	water stabilizes at 23°C. I	Determine the specific

heat capacity of aluminum, given the specific heat capacities of copper as $0.386 \times 10^3 \text{ J kg}^{-1} \text{ °C}^{-1}$. A) 119 J kg⁻¹ °C⁻¹ B) 45.66 J kg⁻¹ °C⁻¹

- C) 0.911 J kg⁻¹°C⁻¹ D) 911 J kg⁻¹°C⁻¹ E) 0.119 J kg⁻¹°C⁻¹

Booklet A

14) Calculate the value of ΔH° for the following reaction

$P_4O_{10}(s) + 6PCl_5(g) \rightarrow 10POCl_3(g)$	using the following equations:		
$(i) \mathbf{P}_4(\mathbf{s}) + 6\mathbf{Cl}_2(\mathbf{g}) \rightarrow 4\mathbf{PCl}_3(\mathbf{g})$	$\Delta H^{\circ} = -1225.6 \text{ kJ/mol}$		
(<i>ii</i>) $P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$	$\Delta H^{\circ} = -2967.3 \text{ kJ/mol}$		
$(iii) \operatorname{PCl}_3(g) + \operatorname{Cl}_2(g) \to \operatorname{PCl}_5(g)$	$\Delta H^{\circ} = -84.2 \text{ kJ/mol}$		
(<i>iv</i>) $PCl_3(g) + \frac{1}{2}O_2(g) \rightarrow POCl_3(g)$ A) -610.1 kJ B) -2857	$\Delta H^{\circ} = -285.7 \text{ kJ/mol}$ 2.0 kJ C) 1620.5 kJ	D) 1841.1 kJ	E) 5103.9 kJ

- 15) Methanol has a normal boiling point of 64.6°C and heat of vaporization (ΔH_{vap}) of 35.2 kJ/mol. What is the vapor pressure of methanol at 12.0°C?
 A) 75.3 mmHg
 B) 86.9 mmHg
 C) 186.9 mmHg
 D) 900.1 mmHg
 E) 767.4 mmHg
- 16) A fountain in front of the Mustafa Inan library at I.T.U., Ayazaga, has pool water at 10 m³ volume. A couple of years ago, winter was very severe and night temperatures fell to -6°C. What is the minimum mass of salt, NaCl, in kilograms that should be added to the fountain water to keep it from freezing? d_{water} = 1 g/cm³
 A) 1612 be a severe and night ended to the foundation of t

A)
$$1613 \text{ kg}$$
 B) $944 x 10^3 \text{ kg}$ C) $188 / x 10^3 \text{ kg}$ D) $188 / \text{ kg}$ E) 944 kg

- 17) Determine the change in internal energy (ΔU) for the transformation of 1 mol of water at 100°C to steam under 1 atm pressure. The heat of vaporization for water at 100°C is 40.670 kJ mol⁻¹. Assume steam behaves ideal gas and the density of water as 1 g/mL.
 A) 3.098 kJ
 B) 21.884 kJ
 C) 30.582 kJ
 D) 43.768 kJ
 E) 37.572 kJ
- 18) Determine the work performed in kilojoules when an external pressure of 2.50 atm is applied, at a constant temperature of 20.0°C, to 50.0 g of N₂ (g) in a 75.0 L cylinder.
 - A) +1.44 kJ B) -0.14 kJ C) +14.6 kJ D) +0.14 kJ E) -14.6 kJ
- 19) Due to the phase diagram given below, if the temperature of the substance is held constant at -15°C, what would be the phase change with a pressure increase from 1 atm to 30 atm?

20) Which of the following is true for the SO₃ molecule?

B) II, IV, V

A) I, III

I) Molecular geometry is trigonal planar.	II) The molecular geometry is a trigonal pyramidal.				
III) The molecule is nonpolar.	IV) Intramolecular bonds are polar.				
V) The bond angles in the molecule are greater than 120° .					

C) I, IV, V

D) I, III, IV

E) II, III, IV

Answer Key Testname: 24DECEMBER-MIDTERM-2-ENA

A
 B
 E
 C
 D
 C
 D
 C
 D
 C
 D
 D
 C
 D
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 D
 C
 C
 C
 D
 C
 C
 C
 C
 D
 C
 C
 D
 C
 D
 C
 D
 C
 D
 D